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Two-dimensional hydrogen in a magnetic field: analytical 
solutions 
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Germany 
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Abstract Analytiwl solutions of the Schrijdinger equation for two-dimensional hydrogen in 
a homogeneous magnetic field (perpendicular to the plane in which the elecmn is located) are 
found for a denumerably infinite set of field strengths. The number of solutions for the N t h  
excited state is N. 

1. Introduction 

Hydrogen in a homogeneous magnetic field is of considerable interest because of the fact 
that the classical system exhibits chaotic behaviour and the quantum mechanical treatment 
provides a rich spectrum, which can be checked experimentally (see [1,2] and references 
therein). A related problem is the investigation of donor states in a magnetic field in 
an effective mass approximation' (see e.g. 131 and references therein). It is shown here, 
that unlike in three dimensions, the two-dimensional Schrodinger equation can be solved 
analytically for a denumerably infinite set of magnetic field strengths. A possible application 
for this model is to donor states in a two-dimensional electron gas. The method employed 
is the same as that used for solving the two-electron oscillator [4] and for two electrons in 
a magnetic field [5]. In any  of the three cases the ultimate ordinary differential equation 
has the form of a one-dimensional Schrodinger equation in an effective potential of the 
form ur-' + Br-' + yr2 ,  being a hybrid of a Coulomb and an oscillator potential. The 
lirst term may be interpreted as the centrifugal term. An earlier attempt [6] to solve the 
Scbrodinger equation in the effective potential $ ( l +  l)r-' - Zr-' +gr  + A r z  led to analytic 
solutions only for g # 0. Whereas the last term hr2 can be attributed to a magnetic field 
in the symmetric gauge (if the two-dimensional space is considered, and consequently if 
the centrifugal term is modified), the linear term has hardly any physical relevance. Thus, 
in [6] virtually the same problem was investigated, but solutions were not found for the 
physically relevant case g + 0 (probably due to an improper ansatz). 

2. Method 

The Hamiltonian to be diagonalized readst 

t The cos system and atomic units 1 = m = e = 1 are used throughout 
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where c is the velocity of light and the vector potential in the symmetric gauge is 
A = $B x r .  The magnetic field B is perpendicular to the plane in which the electron is 
located. In polar coordinates @,a) within the plane and with the ansatz for the eigenfunction 

2" u(r)  
q(r) = -- %Ed m =o. *1,12,. . 

the radial wavefunction u(r )  has to satisfy the radial Schrodinger equation 

Here, the Larmor frequency WL = = B/2c has been introduced, E is the energy 
eigenvalue and m the angular momentum. Now we write u(r) as a product of the asymptotic 
solutions (for small and large r )  and a polynomial 

where additionally the rescaled variable Q = &r has been introduced. Substitution of (4) 
into (3) leaves us with a recursion formula for the expansion coefficients: 

at = - 
(Iml+ Q ) J K Q O  

and for v > 2 we have 

where 

(8) 
2E 
WL 

E = - -2m. 

So far nothing has been done to guarantee normalizability of the eigenfunctions. I cannot 
make any necessary and sufficient statements on this issue. However, a suficient condition 
for normalizability is that the series a, terminates at a certain w = n: 

a0 # 0,al f 0, ..., an-] # O,u, = O,a,+, =0, .... 
Due to the three-step nature of these recursion relations it is a sufficient condition for 
termination to ensure that two succeeding coefficents (say a,, and a,+,) vanish; the rest then 
vanish automatically. Suppose we have calculated a, from (5)-(7) in the form 

Now, the two conditions which guarantee a. = 0 and a.+, = 0 read 

F(lml, n,  E, OL) = 0 (11) 
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and 

E = 2(lml+ n) .  (12) 
These two equations are satisfied only when the energy E (or E )  and the magnetic field 
B (or OL) are considered as disposable parameters. Thus, we obtain for any n a certain 
number of pairs (OL, E ) ,  for which normalizability is guaranteed. Technically, we substitute 
€.from (12) into (11) and obtain 

(13) 
which is a polynomial in &. The zeros of (13) provide the allowed magnetic fields. The 
corresponding energies follow from (12) and (8): 

W m l ,  n, 2(lml +n), WL) = 0 

E = oL(n + Iml + m). (14) 

Table 1. All &wed Larmor frequencies b& and corresponding eigenvalues E for Z = 1. 
n = 2-10 and m = 0 and 1. N is the number of nodes of the radial wavefunction. indicatine ,~ ~ . .  which excited state it is. 

m = O  

n E N 

2 O.5OOOOOEtOO 0.400000Et01 1 
3 0.300000Et01 0.100000!301 2 
4 0.927200Et01 0.431406EtOO 3 

0.727998EtOO 0.549452Et01 2 
5 0.211168W.02 0.236778Et00 4 

m = l  

n o i l  E N 

2 0.150000Et01 0.266667E+01 1 
3 0.700000Et01 0.714286EtOO 2 
4 0.181394€+02 0.330772EtOO 3 

0.186059EtOl 0.322478EtOl 2 
5 0.366810Et02 0.190991EtOO 4 

038831GE+Ol 0.128761EtO1 3 0 8349035~01 0.838421Et00 3 
6 0.403133E102 0.1488YElrO 8 6 0.612985E~02 0.12442OE~00 5 

0.1 12570Et02 0.533000Et00 4 0.210161E~02 0.380660Et00 4 
0.929632Et00 0.648417E-OI 3 0 218539E-01 0.366068E*OI 3 

7 0686XOW.02 O.l01981E+OO 6 7 0.102855Er03 0.875018E41 6 
0.246751EtO2 0.283687E-00 5 0.415559E-02 0.216576E1OC 5 
0.468692E+Ol 0.149352EtOl 4 0.958910E~Ol 0.938566E-00 4 

8 0.107868E43 0.741648Ml 7 8 0.154096E-03 0.64894EOI 7 
0.459214!302 0.174?11E~00 G 0.717176E~02 0.139436Et00 6 
0.130953Et02 0.610908E-00 8 0.236998Et02 0.421945E~00 5 
0.111839EtOl 0.717239E.01 4 0.248615EtOl 0.402228ET01 4 

9 0.159781EtO3 0.563272EOl 8 
0.767724Et02 0.11723OEt00 7 
0.?80095E*02 0.321320Et00 6 
0.543732E-01 O.I65523E+Ol 8 

9 0.219800E+03 0.500456E-01 8 
0.113269E103 0.971138Ml 7 
0 461803E42 0.238197E-00 6 
0 107509EtO2 0.102317E~OI 5 

10 0.226154Et03 0.44217E-01 9 10 -0.301742E+03 0.397691E-01 9 
0.1 19005Et03 0.840301EOI 8 0.167984B43 0.714383E-01 8 
0.812233Et02 0.195224EtOO 7 
0.148274EtO2 0.674429EtOO 6 

0.787673EtO2 0.152347EtOO 7 
0.262373E+02 0.457365EtOO 6 

0.129016EtOl 0.775096vFOl 5 0.276930Mol 0.433323EtOl 8 

3. Results 

The simplest solutions obtained in this way read as follows: for n = 2 and arbitmy angular 
momentum m we have 
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Figure 1. Eigenvalues E plotted against inverse Larmor frequencies I/OL for Z = I and 
(a) m = 0, (b) m = 1. The numbers in parentheses (n. N) are the termination index n and the 
number of nodes N of me corresponding radial wavefunction. 

and for n = 3 we obtain 

2 2  
OL = - 

41mlf  3 
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For n > 4~equation (13) has more than one solution. Exactly speaking, the number 
of solutions is int(n/2) (see also table 1). So far, it has not been mentioned whether 
the solutions found in this way are ground or excited states. It is easily seen that the 
wavefunction for n = 2 has one node (first excited state) and the solution for n = 3 has 
two nodes (second excited state). The two solutions for n = 4 have 2 and 3 nodes, etc. In 

’ table 1 all solutions are given for Z = 1, m = 0 and 1, and n = 2-10; in figure 1 some are 
plotted. 

Two comments are in order here. Firstly, all energies obtained by this method are 
positive. From the solutions for B = 0 (which can be calculated using the conventional 
method familiar from three-dimensional hydrogen) 

2 2  

2(n + J ~ J  - $2 
E,,(B = 0) = - 

it is clear, that for small B all eigenvalues must be negative. Secondly, there is no ground 
state among our exact solutions, however, for any angular momentum we have one first 
excited state, two second excited states etc (see table 1). From both features we conclude 
that our method is particularly suited for higher excited states (Rydberg states) and high 
magnetic fields. 
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